Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 20: 520-534, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614826

RESUMO

Recent advances in adeno-associated viral (AAV) capsid variants with novel oligotropism require validation in models of disease in order to be viable candidates for white matter disease gene therapy. We present here an assessment of the biodistribution, tropism, and efficacy of a novel AAV capsid variant (AAV/ Olig001) in a model of Canavan disease. We first define a combination of dose and route of administration of an AAV/Olig001-GFP reporter conducive to widespread CNS oligodendrocyte transduction in acutely symptomatic animals that model the Canavan brain at time of diagnosis. Administration of AAV/Olig001-GFP resulted in >70% oligotropism in all regions of interest except the cerebellum without the need for lineage-specific expression elements. Intracerebroventricular infusion into the cerebrospinal fluid (CSF) was identified as the most appropriate route of administration and employed for delivery of an AAV/Olig001 vector to reconstitute oligodendroglial aspartoacylase (ASPA) in adult Canavan mice, which resulted in a dose-dependent rescue of ASPA activity, motor function, and a near-total reduction in vacuolation. A head-to-head efficacy comparison with astrogliotropic AAV9 highlighted a significant advantage conferred by oligotropic AAV/Olig001 that was independent of overall transduction efficiency. These results support the continued development of AAV/Olig001 for advancement to clinical application to white matter disease.

2.
Neurobiol Dis ; 148: 105184, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221532

RESUMO

Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.


Assuntos
Modelos Animais de Doenças , Atrofia de Múltiplos Sistemas/genética , Neostriado/patologia , Neurônios/patologia , Oligodendroglia/patologia , Putamen/patologia , alfa-Sinucleína/genética , Animais , Dependovirus , Vetores Genéticos , Humanos , Macaca fascicularis , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Oligodendroglia/metabolismo , Ratos , Técnicas Estereotáxicas , alfa-Sinucleína/metabolismo
3.
Hum Gene Ther ; 31(21-22): 1155-1168, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940068

RESUMO

Recently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes. However, similar to our previous findings, the insertion of six alanines into VP1/VP2 of the AAV9 capsid (AAV9AU) significantly shifted JetI-driven GFP gene expression to neurons. In addition, previous retrograde tracing studies in the nonhuman primate brain also revealed the existence of a capsid-promoter interaction. When rAAV2-Retro vectors were infused into the frontal eye field (FEF) of rhesus macaques, local gene expression was prominent using either the hybrid chicken beta actin (CAG) or human synapsin (hSyn) promoters. However, only the CAG promoter, not the hSyn promoter, led to gene expression in the ipsilateral claustrum and contralateral FEF. Conversely, infusion of rAAV2-retro-hSyn vectors, but not rAAV2-retro-CAG, into the macaque superior colliculus led to differential and selective retrograde gene expression in cerebellotectal afferent cells. Clearly, this differential promoter/capsid expression profile could not be attributed to promoter inactivation from retrograde transport of the rAAV2-Retro vector. In summary, we document the potential for AAV capsid/promoter interactions to impact cell-specific gene expression across species, experimental manipulations, and engineered capsids, independent of capsid permissivity.


Assuntos
Encéfalo/metabolismo , Capsídeo/metabolismo , Dependovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Transgenes , Animais , Dependovirus/genética , Macaca mulatta , Masculino , Ratos , Ratos Sprague-Dawley
4.
Mol Ther ; 28(5): 1373-1380, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213322

RESUMO

Cell-selective gene expression comprises a critical element of many adeno-associated virus (AAV) vector-based gene therapies, and to date achieving this goal has focused on AAV capsid engineering, cell-specific promoters, or cell-specific enhancers. Recently, we discovered that the capsid of AAV9 exerts a differential influence on constitutive promoters of sufficient magnitude to alter cell type gene expression in the rat CNS. For AAV9 vectors chicken ß-actin (CBA) promoter-driven gene expression exhibited a dominant neuronal gene expression in the rat striatum. Surprisingly, for otherwise identical AAV9 vectors, the truncated CBA hybrid (CBh) promoter shifted gene expression toward striatal oligodendrocytes. In contrast, AAV2 vector gene expression was restricted to striatal neurons, regardless of the constitutive promoter used. Furthermore, a six-glutamate residue insertion immediately after the VP2 start residue shifted CBA-driven cellular gene expression from neurons to oligodendrocytes. Conversely, a six-alanine insertion in the same AAV9 capsid region reversed the CBh-mediated oligodendrocyte expression back to neurons without changing AAV9 capsid access to oligodendrocytes. Given the preponderance of AAV9 in ongoing clinical trials and AAV capsid engineering, this AAV9 capsid-promoter interaction reveals a previously unknown novel contribution to cell-selective AAV-mediated gene expression in the CNS.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Corpo Estriado/metabolismo , Dependovirus/genética , Expressão Gênica , Neurônios/metabolismo , Regiões Promotoras Genéticas , Animais , Terapia Genética , Vetores Genéticos , Células HEK293 , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução Genética , Transgenes
5.
Mol Neurobiol ; 55(5): 4463-4472, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28669125

RESUMO

Insights into the dynamic changes in molecular processes occurring in the brain during epileptogenesis can substantially improve our understanding of their pathogenetic relevance. In this context, neuroinflammation is a potential mechanism of epileptogenesis which has recently been investigated in animal models by MRI or PET molecular imaging. Here, we developed an alternative and complementary molecular imaging strategy by designing a serotype 8 recombinant adeno-associated virus (AAV8) harboring promoter fragments of the GFAP or IL-1ß promoter and a luciferase reporter gene. Mice were injected intrahippocampally with rAAV8 and treated with intracortical kainic acid to induce status epilepticus (SE) and hence epileptogenesis. In vivo bioluminescence imaging combined with immunohistochemistry revealed a significant activation of the GFAP promoter 24 h and 3 days after kainate-induced SE. For IL-1ß, we identified the promoter region required for studying cell-specific induction of the promoter in longitudinal studies. We conclude that the GFAP promoter fragment represents a useful tool for monitoring the in vivo activation of astrocytes with an inflammatory phenotype during epileptogenesis, or under other pathophysiological conditions.


Assuntos
Astrócitos/patologia , Imageamento Tridimensional , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/patologia , Animais , Astrócitos/metabolismo , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Ácido Caínico , Luciferases/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Estado Epiléptico/genética
6.
Acta Neuropathol Commun ; 5(1): 47, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28619074

RESUMO

Multiple system atrophy (MSA) is a horrible and unrelenting neurodegenerative disorder with an uncertain etiology and pathophysiology. MSA is a unique proteinopathy in which alpha-synuclein (α-syn) accumulates preferentially in oligodendroglia rather than neurons. Glial cytoplasmic inclusions (GCIs) of α-syn are thought to elicit changes in oligodendrocyte function, such as reduced neurotrophic support and demyelination, leading to neurodegeneration. To date, only a murine model using one of three promoters exist to study this disease. We sought to develop novel rat and nonhuman primate (NHP) models of MSA by overexpressing α-syn in oligodendroglia using a novel oligotrophic adeno-associated virus (AAV) vector, Olig001. To establish tropism, rats received intrastriatal injections of Olig001 expressing GFP. Histological analysis showed widespread expression of GFP throughout the striatum and corpus callosum with >95% of GFP+ cells co-localizing with oligodendroglia and little to no expression in neurons or astrocytes. We next tested the efficacy of this vector in rhesus macaques with intrastriatal injections of Olig001 expressing GFP. As in rats, we observed a large number of GFP+ cells in gray matter and white matter tracts of the striatum and the corpus callosum, with 90-94% of GFP+ cells co-localizing with an oligodendroglial marker. To evaluate the potential of our vector to elicit MSA-like pathology in NHPs, we injected rhesus macaques intrastriatally with Olig001 expressing the α-syn transgene. Histological analysis 3-months after injection demonstrated widespread α-syn expression throughout the striatum as determined by LB509 and phosphorylated serine-129 α-syn immunoreactivity, all of which displayed as tropism similar to that seen with GFP. As in MSA, Olig001-α-syn GCIs in our model were resistant to proteinase K digestion and caused microglial activation. Critically, demyelination was observed in the white matter tracts of the corpus callosum and striatum of Olig001-α-syn but not Olig001-GFP injected animals, similar to the human disease. These data support the concept that this vector can provide novel rodent and nonhuman primate models of MSA.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Atrofia de Múltiplos Sistemas/metabolismo , Oligodendroglia/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Dependovirus/genética , Endopeptidase K/metabolismo , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Macaca mulatta , Masculino , Microglia/metabolismo , Microglia/patologia , Atrofia de Múltiplos Sistemas/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/patologia , Ratos Sprague-Dawley , alfa-Sinucleína/genética
7.
Mol Ther ; 25(4): 928-934, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28202388

RESUMO

Recent advances suggest that in vivo reprogramming of endogenous cell populations provides a viable alternative for neuron replacement. Astrocytes and oligodendrocyte precursor cells can be induced to transdifferentiate into neurons in the CNS, but, in these instances, reprogramming requires either transgenic mice or retroviral-mediated gene expression. We developed a microRNA (miRNA)-GFP construct that in vitro significantly reduced the expression of polypyrimidine tract-binding protein, and, subsequently, we packaged this construct in a novel oligodendrocyte preferring adeno-associated virus vector. Ten days after rat striatal transduction, the vast majority of the GFP-positive cells were oligodendrocytes, but 6 weeks to 6 months later, the majority of GFP-positive cells exhibited neuronal morphology and co-localized with the neuronal marker NeuN. Patch-clamp studies on striatal slices established that the GFP-positive cells exhibited electrophysiological properties indicative of mature neurons, such as spontaneous action potentials and spontaneous inhibitory postsynaptic currents. Also, 3 months after striatal vector administration, GFP-positive terminals in the ipsilateral globus pallidus or substantia nigra retrogradely transported fluorescent beads back to GFP-positive striatal cell bodies, indicating the presence of functional presynaptic terminals. Thus, this viral vector approach provides a potential means to harness resident oligodendrocytes as an endogenous source for in vivo neuronal replacement.


Assuntos
Transdiferenciação Celular/genética , Reprogramação Celular/genética , Corpo Estriado/citologia , Vetores Genéticos/genética , Neurônios/citologia , Oligodendroglia/citologia , Animais , Linhagem Celular , Dependovirus/genética , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Ratos
8.
Neurobiol Dis ; 96: 323-334, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717881

RESUMO

Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation "oligotropic" adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase.


Assuntos
Amidoidrolases/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/enzimologia , Doença de Canavan/patologia , Bainha de Mielina/fisiologia , Oligodendroglia/enzimologia , Amidoidrolases/genética , Animais , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Relacionadas à Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Doença de Canavan/complicações , Doença de Canavan/diagnóstico por imagem , Doença de Canavan/genética , Criança , Pré-Escolar , Dependovirus/genética , Progressão da Doença , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , Proteína Básica da Mielina/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética
9.
Mol Ther Methods Clin Dev ; 2: 15025, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229972

RESUMO

The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~10(7) infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 10(8) IU/mL, which upon concentration increased to 10(10) IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.

10.
Adv Genet ; 87: 71-124, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25311921

RESUMO

Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood-brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors.


Assuntos
Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/terapia , Terapia Genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Humanos , Lentivirus/genética
11.
J Neurosci ; 34(17): 5824-34, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760842

RESUMO

Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.


Assuntos
Álcoois/administração & dosagem , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Condicionamento Operante/fisiologia , Etanol/administração & dosagem , Pregnanolona/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Condicionamento Operante/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
12.
Exp Neurol ; 247: 429-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23333565

RESUMO

Resected epileptic tissues exhibit elements of chronic neuroinflammation that include elevated TNFα and increased TNFα receptor activation, but the seizure related consequences of chronic TNFα expression remain unknown. Twenty four hours after acute limbic seizures the rat hippocampus exhibited a rapid upregulation of TNFR1, but a simultaneous downregulation of TNFR2. These limbic seizures also evoked significant increases in measures of neuroinflammation and caused significant neuronal cell death in both the hilus and CA3 of the hippocampus. In order to mimic a state of chronic TNFα exposure, adeno-associated viral vectors were packaged with a TNF receptor 1 (TNFR1) specific agonist, human TNFα, or a TNF receptor 1/2 agonist, rat TNFα. Subsequently, chronic hippocampal overexpression of either TNFR ligand caused microglial activation and blood-brain barrier compromise, a pattern similar to limbic seizure-induced neuroinflammation. However, no evidence was found for neuronal cell death or spontaneous seizure activity. Thus, chronic, in vivo TNFα expression and the subsequent neuroinflammation alone did not cause cell death or elicit seizure activity. In contrast, chronic hippocampal activation of TNFR1 alone significantly increased limbic seizure sensitivity in both amygdala kainic acid and electrical amygdala kindling models, while chronic activation of both TNFR1 and TNFR2 significantly attenuated the amygdala kindling rate. With regard to endogenous TNFα, chronic hippocampal expression of a TNFα decoy receptor significantly reduced seizure-induced cell death in the hippocampus, but did not alter seizure susceptibility. These findings suggest that blockade of endogenous TNFα could attenuate seizure related neuropathology, while selective activation of TNFR2 could exert beneficial therapeutic effects on in vivo seizure sensitivity.


Assuntos
Hipocampo/metabolismo , Sistema Límbico/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Convulsões/patologia , Fator de Necrose Tumoral alfa/metabolismo , Análise de Variância , Animais , Antígeno CD11b , Linhagem Celular Transformada , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Excitação Neurológica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/biossíntese
13.
Neuropharmacology ; 69: 82-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465202

RESUMO

Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.


Assuntos
Dependovirus/genética , Terapia Genética , Doenças do Sistema Nervoso/terapia , Animais , Expressão Gênica , Vetores Genéticos , Humanos , Injeções Intraventriculares , Transgenes/genética
14.
Exp Neurol ; 244: 27-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22008258

RESUMO

This review addresses the state of gene therapy research for the treatment of epilepsy. Preclinical studies have demonstrated the anti-seizure efficacy of viral vector-based gene transfer through the use of a variety of strategies - from modulating classic neurotransmitter systems to targeting or overexpressing of neuropeptide receptors in seizure-specific brain regions. While these studies provide substantive proof of principle for viral vector gene therapy, future studies must address the challenges of vector immunity, cellular specificity and effective global delivery. As these issues are resolved, viral vector gene therapy should significantly impact the treatment of intractable epilepsy.


Assuntos
Epilepsia/terapia , Terapia Genética/métodos , Animais , Epilepsia/genética , Técnicas de Transferência de Genes , Vetores Genéticos/fisiologia , Humanos
15.
Addict Biol ; 17(2): 338-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21762289

RESUMO

Neuropeptide Y (NPY) and protein kinase A (PKA) have been implicated in neurobiological responses to ethanol. We have previously reported that mutant mice lacking normal production of the RIIß subunit of PKA (RIIß-/- mice) show enhanced sensitivity to the locomotor stimulant effects of ethanol and increased behavioral sensitization relative to littermate wild-type RIIß+/+ mice. We now report that RIIß-/- mice also show increased NPY immunoreactivity in the nucleus accumbens (NAc) core and the ventral striatum relative to RIIß+/+ mice. These observations suggest that elevated NPY signaling in the NAc and/or striatum may contribute to the increased sensitivity to ethanol-induced behavioral sensitization that is a characteristic of RIIß-/- mice. Consistently, NPY-/- mice failed to display ethanol-induced behavioral sensitization that was evident in littermate NPY+/+ mice. To examine more directly the role of NPY in the locomotor stimulant effects of ethanol, we infused a recombinant adeno-associated virus (rAAV) into the region of the NAc core of DBA/2J mice. The rAAV-fibronectin (FIB)-NPY(13-36) vector expresses and constitutively secretes the NPY fragment NPY(13-36) (a selective Y(2) receptor agonist) from infected cells in vivo. Mice treated with the rAAV-FIB-NPY(13-36) vector exhibited reduced expression of ethanol-induced behavioral sensitization compared with mice treated with a control vector. Taken together, the current data provide the first evidence that NPY signaling in the NAc core and the Y(2) receptor modulate ethanol-induced behavioral sensitization.


Assuntos
Gânglios da Base/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etanol/farmacologia , Neuropeptídeo Y/metabolismo , Núcleo Accumbens/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Atividade Motora/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Reforço Psicológico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
16.
Curr Protoc Neurosci ; Chapter 4: Unit 4.17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21971848

RESUMO

Adeno-associated virus is a nonpathogenic human virus that has been developed into a gene-delivery vector due to its high efficiency of infection for many different cell types and its ability to persist and lead to long-term gene expression. This unit describes efficient methods to generate high-titer, research-grade, adenovirus-free recombinant single-stranded and self-complementary adeno-associated virus in various serotypes, along with methods to quantify the viral vectors. Two detailed methods are provided for viral vector delivery into the rodent brain and spinal cord, and for histological detection of transgene expression of GFP.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Animais , Encéfalo/metabolismo , Dependovirus/metabolismo , Vetores Genéticos/administração & dosagem
17.
Curr Gene Ther ; 11(3): 181-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453285

RESUMO

Adeno-associated virus (AAV) vectors exhibit a number of properties that have made this vector system an excellent choice for both CNS gene therapy and basic neurobiological investigations. In vivo, the preponderance of AAV vector transduction occurs in neurons where it is possible to obtain long-term, stable gene expression with very little accompanying toxicity. Promoter selection, however, significantly influences the pattern and longevity of neuronal transduction distinct from the tropism inherent to AAV vectors. AAV vectors have successfully manipulated CNS function using a wide variety of approaches including expression of foreign genes, expression of endogenous genes, expression of antisense RNA and expression of RNAi. With the discovery and characterization of different AAV serotypes, as well as the creation of novel chimeric serotypes, the potential patterns of in vivo vector transduction have been expanded substantially, offering alternatives to the more studied AAV 2 serotype. Furthermore, the development of specific AAV chimeras offers the potential to further refine targeting strategies. These different AAV serotypes also provide a solution to the immune silencing that proves to be a realistic likelihood given broad exposure of the human population to the AAV 2 serotype. These advantageous CNS properties of AAV vectors have fostered a wide range of clinically relevant applications including Parkinson's disease, lysosomal storage diseases, Canavan's disease, epilepsy, Huntington's disease and ALS. In many cases the proposed therapies have progressed to phase I/II clinical trials. Each individual application, however, presents a unique set of challenges that must be solved in order to attain clinically effective gene therapies.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Sistema Nervoso Central/virologia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Animais , Humanos
18.
Hum Gene Ther ; 22(9): 1143-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21476867

RESUMO

With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken ß-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Sistema Nervoso Periférico/metabolismo , Regiões Promotoras Genéticas , Transdução Genética , Actinas/genética , Animais , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Especificidade de Órgãos/genética , Ratos , Ratos Sprague-Dawley
19.
Mol Ther ; 19(3): 547-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21157436

RESUMO

Nonintegrating lentiviral vectors present a means of reducing the risk of insertional mutagenesis in nondividing cells and enabling short-term expression of potentially hazardous gene products. However, residual, integrase-independent integration raises a concern that may limit the usefulness of this system. Here we present a novel 3' polypurine tract (PPT)-deleted lentiviral vector that demonstrates impaired integration efficiency and, when packaged into integrase-deficient particles, significantly reduced illegitimate integration. Cells transduced with PPT-deleted vectors exhibited predominantly 1-long terminal repeat (LTR) circles and a low level of linear genomes after reverse transcription (RT). Importantly, the PPT-deleted vector exhibited titers and in vitro and in vivo expression levels matching those of conventional nonintegrating lentiviral vectors. This safer nonintegrating lentiviral vector system will support emerging technologies, such as those based on transient expression of zinc-finger nucleases (ZFNs) for gene editing, as well as reprogramming factors for inducing pluripotency.


Assuntos
Deleção de Genes , Vetores Genéticos/genética , Lentivirus/genética , Integração Viral/genética , Animais , Encéfalo/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/genética , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Recombinação Genética , Sequências Repetidas Terminais/genética , Carga Viral
20.
Drug News Perspect ; 23(5): 281-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20603651

RESUMO

Adeno-associated virus (AAV) vectors support long-term, nontoxic gene expression in the central nervous system, and these AAV properties prove particularly applicable to the treatment of focal epilepsies, especially intractable temporal lobe epilepsy. A number of clinical studies have employed AAV vectors and to date, no known adverse effects have been directly associated with these treatments, particularly AAV serotype 2 (AAV2). Although other AAV serotypes may confer an advantage in the future, extensive studies on the inhibitory neuropeptides, galanin and neuropeptide Y, have generated enough preclinical evidence of efficacy to warrant AAV2-based clinical trials in the near future. Beyond these trials, emerging evidence suggests that AAV-mediated manipulation of adenosine can significantly impact limbic seizure activity. Thus, with appropriate nonhuman primate transduction patterns and favorable overall toxicology studies, AAV-based manipulation of adenosine could follow the AAV-neuropeptide clinical studies. Finally, recent findings using AAV capsid shuffling and directed evolution have identified a hybrid AAV vector that can selectively cross the seizure compromised blood-brain barrier and transduce cells after peripheral, intravenous administration. Thus, in the more distant future, AAV therapeutics for focal epilepsies may be delivered without any neurosurgical interventions.


Assuntos
Dependovirus/genética , Epilepsia/terapia , Terapia Genética , Vetores Genéticos , Adenosina/genética , Animais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Neuropeptídeos/genética , Neuropeptídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...